
More Testing,
Fewer Tests

Tyler A. Young

@TylerAYoung TylerAYoung.com

https://twitter.com/TylerAYoung
https://tylerayoung.com

Let’s build a permissioning system!

@TylerAYoung TylerAYoung.com

Ability Logged out Viewer Author Editor

View published post ✔ ✔ ✔ ✔

View draft post ✔ ✔ ✔

Create post ✔ ✔

Edit own post ✔ ✔

Edit others’ post ✔

https://twitter.com/TylerAYoung
https://tylerayoung.com

Let’s see some code!

@TylerAYoung TylerAYoung.com

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Test diffusion
Logic gets smeared
across 4 × 5 tests

So much for tests
as documentation!

Realistically, there
could be 20–50 rows
in this table 😱

Ability Logged out Viewer Author Editor

View published
post

✔ ✔ ✔ ✔

View draft post ✔ ✔ ✔

Create post ✔ ✔

Edit own post ✔ ✔

Edit others’ post ✔

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

The dark side of testing
Tests are code, and code is a liability.

All else being equal, more tests are worse than fewer tests.

● Slower to write

● Slower to run

● More to update when changing behavior

● More to take in when reading tests as documentation

● More to check when deciding if an existing test case should have
covered a situation you’re debugging

https://twitter.com/TylerAYoung
https://tylerayoung.com

Can we get the same
(or better!) confidence

from fewer tests?

@TylerAYoung TylerAYoung.com

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Permissions are policies
● Arbitrary

○ The opposite of objective

○ Few invariants

● High likelihood of changing or extending in the future

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

What about property-based testing?
● PBT uses invariants and generated data to check behavior

○ Every member of a sorted list is greater than or equal to the
one before it

○ Round-trip through an encode + decode process produces
the same value you started with

● Not all code is heavy on invariants, though!

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Invariants in the permissions system
● Permissions increase

left-to-right

● Never have more
permissions on drafts
vs. published posts

● Owned posts never
have less permissions
than unowned

Ability Logged out Viewer Author Editor

View published
post

✔ ✔ ✔ ✔

View draft post ✔ ✔ ✔

Create post ✔ ✔

Edit own post ✔ ✔

Edit others’ post ✔

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Policies are not invariants
● Logged-in viewers can see draft posts

● There’s a button on the home page labeled “Sign Up”

● The Free plan gets features x and y, but the Professional plan
also gets feature z

● Trials are 14 days

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Invariants: Relative datetimes
@spec relative_datetime(DateTime.t()) :: String.t()

● 30 seconds or less → “just now”
● < 60 minutes → “x mins ago”
● < 24 hours → “x hours ago”
● < 30 days → “x days ago”
● < 365 days → “x months ago”
● Else → “x years ago”

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Invariants: Relative datetimes
@spec relative_datetime(DateTime.t(), DateTime.t()) ::
 String.t()
def relative_datetime(dt, now \\ DateTime.utc_now())

● 30 seconds or less → “just now”
● < 60 minutes → “x min(s)”
● < 24 hours → “x hour(s)”
● < 30 days → “x day(s)”
● < 365 days → “x month(s)”
● Else → “x years”

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

[Aside] Property test coverage in CI
By default, you don’t get great exploration of the edges in your
property tests.

You probably want more runs, potentially with a capped runtime
instead of capped number of tests.

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

The dark horse: snapshot testing
What if we recorded the behavior of the function as-is
and compared future runs with this one?

Extremely useful when coming into a system with no tests

Libraries:

● assert_value (useful generically)
● heyya (for Phoenix LiveView)

https://twitter.com/TylerAYoung
https://tylerayoung.com
https://github.com/assert-value/assert_value_elixir
https://github.com/batteries-included/heyya

You don’t understand
a tool until you know
when not to use it.

@TylerAYoung TylerAYoung.com

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Comparison of testing methods
Barrier to
entry

Speed to
write

Maintenance &
extension

Logical
grouping Communication

Traditional Lowest Slow Linear Low Medium

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Comparison of testing methods
Barrier to
entry

Speed to
write

Maintenance &
extension

Logical
grouping Communication

Traditional Lowest Slow Linear Low Medium

Parameterized Low Slower Sub-linear High High

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Comparison of testing methods
Barrier to
entry

Speed to
write

Maintenance &
extension

Logical
grouping Communication

Traditional Lowest Slow Linear Low Medium

Parameterized Low Slower Sub-linear High High

Property High Slowest Sub-linear High Depends

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Comparison of testing methods
Barrier to
entry

Speed to
write

Maintenance &
extension

Logical
grouping Communication

Traditional Lowest Slow Linear Low Medium

Parameterized Low Slower Sub-linear High High

Property High Slowest Sub-linear High Depends

Snapshot Low Fast Linear Low Low

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Comparison of testing methods
Traditional Parameterized Property Snapshot

Unconditional behavior ✔

Low-impact behavior ✔ ✔

Policies ✔ ✔ (Double-check)

Invariants ✔

Low existing coverage ✔

https://twitter.com/TylerAYoung
https://tylerayoung.com

@TylerAYoung TylerAYoung.com

Summary
● All else being equal, fewer tests are better

● Tools for writing fewer tests:

○ More assertions per test
○ For comprehensions within a test
○ Elixir 1.18 built-in parameterized tests
○ parameterized_test library
○ Property-based testing
○ Snapshot testing

Need Elixir
development or
consulting?

Reach out!

https://twitter.com/TylerAYoung
https://tylerayoung.com

