
Delightful Multiplayer
Editing with Phoenix
Tyler A. Young
Felt

@TylerAYoung TylerAYoung.com

https://felt.com
https://twitter.com/TylerAYoung
https://tylerayoung.com

Hi, I’m Tyler
Recovering C++ developer

Lots of soft-real time work

Built an MMO server for the X-Plane flight sim

Now work at Felt on “the Figma for maps”

https://felt.com/map/Currently-N7bZNUKISn9BC9BviQktUrGA

https://felt.com/map/Currently-the-Boat-Great-Loop-Trip-N7bZNUKISn9BC9BviQktUrGA

http://www.youtube.com/watch?v=JVwappv1-jE

So you want a web app people
will love to use.
● Low latency

● Low waiting

● High reliability

● Gets out of your way

So you want a web app people
will love to use.
● Low latency

● Low waiting

● High reliability

● Gets out of your way

} There’s some inherent
tension between these!

So you want a web app people
will love to use.
1. Use Channels (LiveView?)

2. …

3. ???

Channels are great!
● Persistent, stateful connection

● Low latency (one handshake rather
than one per message)

● Bidirectional (no need for polling)

…but they don’t solve everything.

Minimizing time to first
(useful) render
Goal: Get to a useful state even before the
WebSocket is open

Include on the page initial JSON that would have
been a separate request

Use Phoenix’s HTML escaping
to prevent XSS vulnerabilities

(OWASP Cheat Sheet)

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#html-entity-encoding

Minimizing time to first
(useful) render
Cache this initial JSON for popular pages?

Getting Slashdotted could result in ~no
database load!

Reduce latency: Optimistic local edits

When a client makes a change, the frontend
assumes it will be successful.

(That’s true 99.?% of the time.)

Does have to handle the possibility that the server
response will correct that assumption.

Reduce latency: Optimistic broadcasts

Old workflow:

1. Client sends an edit to the server
2. Write it to the database
3. Broadcast the change to connected

clients

Reduce latency: Optimistic broadcasts

Old workflow:

1. Client sends an edit to the server
2. Broadcast the change to connected

clients
3. Write it to the database

New

Reduce latency: Optimistic broadcasts

Old workflow:

1. Client sends an edit to the server
2. Broadcast the change to connected

clients
3. Write it to the database
4. (Maybe) broadcast any discrepancies

New

Don’t block the Channel process

All messages on a given process get handled
sequentially

Long-running tasks (say, longer than 500 ms)
make the server unresponsive

Don’t block the Channel process

✉✉✉✉✉📪
4 8 10k 3 9

FibChannel
mailbox

Don’t block the Channel process

✉✉✉✉📪
8 10k 3 9

FibChannel
mailbox

Don’t block the Channel process

✉✉✉📪
10k 3 9

FibChannel
mailbox

Out-of-process channel handler sample

Out-of-process channel handler sample

⚠
Breaks sequential

ordering guarantees!

Don’t block the Channel process

Not always obvious!

Attach an event handler† to the
[:phoenix, :channel_handled_in] event
to log these in production

† https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78
https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

https://gist.github.com/s3cur3/8a5fe8fc99eaa34dac985d98b3e60e78

Detect when you’ve gone offline

Built-in detection of WebSocket disconnect isn’t
enough

● 30-60 seconds before the browser WebSocket
API fires the disconnect event

● What happens if your Channel stops
responding but the socket is still alive?

Detect when you’ve gone offline

Easy step 1: watch navigator.onLine

→ Super fast for detecting when the client goes
 entirely offline

More heartbeats in more places

Channel-specific heartbeats let us very quickly
detect when our messages aren’t going through

● Time out if we don’t hear back one way or
another

● Easily detect when the initial connection
negotiation has hung

More heartbeats in more places

Channel-specific heartbeats let us very quickly
detect when our messages aren’t going through

● Time out if we don’t hear back one way or
another

● Easily detect when the initial connection
negotiation has hung

Cache edits locally

If you go offline while edits are in flight, what do
we do?

Is it safe to apply a particular edit later?

Cache edits locally

localStorage for easily reconcilable changes
(like adding a new element)
● Try to flush the next time we load the page
● Handle the case where the change went

through, but the client hadn’t heard about it
(idempotence)

CRDTs for other stuff?

Be resilient to lost messages

Connection issues, browser refreshes, deploys,
etc. could all cause a message to be lost.

How can we be more permissive in what we
accept?

Do we really need the “create” message before an
“update”? (Most things can be an upsert)

Future work

Multi-node for seamless deploys

CRDTs?

Fully offline editing?
● What if you never come back online? 😱
● How do we handle missing tile data?

Global distribution via Fly.io?

Catchup mechanism?

Summary
Less waiting
● Minimize time to first render
● Cache popular maps

Less latency
● Optimistic editing
● Optimistic broadcasts from the server
● Don’t block the Channel process

Less data loss
● Detect problems with the WebSocket early
● Prevent or back up edits we can’t save
● Make the protocol more resilient to dropped

messages

@TylerAYoung TylerAYoung.com

We’re hiring! 😄

https://twitter.com/TylerAYoung
https://tylerayoung.com

