
THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED
AERIAL VEHICLES

TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

Abstract. In order for unmanned aerial vehicles (UAVs) to be widely adopted
in civilian airspace, they must be capable of safe, autonomous flight. The prob-
lem of collision avoidance in UAVs is discussed in its theoretical foundations, and
a formulation of the problem is given which clarifies what authors in the litera-
ture are concerned with when designing their algorithms. An overview is given of
the methods of collision avoidance and path planning most widely represented in
the literature, including A* (“A-star”) search, geometric methods, mixed-integer
linear programming (MILP), and artificial potential fields (APFs). Discussion
of the strengths and weaknesses of each approach accompanies its description,
as well as steps which may be taken to contend with any weaknesses.

1. Introduction

In recent years, interest in unmanned aerial vehicles (UAVs) has grown steadily
in the private sector. Applications as varied as fertilizing crops, surveying land,
and patrolling borders could employ UAVs to increase efficiency, lower costs, and
keep humans from potentially dangerous situations [1].

As civil and commercial interest in UAVs grows, however, a number of obstacles
remain which prevent their widespread adoption in nonmilitary situations (i.e., in
civilian airspace). Primary among these obstacles, at least in the United States, is
the requirement set forth by the Federal Aviation Administration (FAA) that for
UAVs to be integrated into the national airspace, they must be at least as compe-
tent (capable of operating safely) as an equivalent human pilot without cooperative
communication (such as commands from a human controller or information from
neighboring aircraft) [3]. Many UAVs today are designed to operate primarily with
the remote guidance of a human pilot, but to be widely certified for flight in the
national airspace, regulatory agencies require the aircraft to be capable of safe
autonomous operations in the event of a contingency. There are approximately 0.5
midair collisions per million flight hours in the United States [9]; to be cleared for
flight in civil airspace, then, a UAV would have to demonstrate an ability to fly at
least this safely autonomously.

Safe air operations are often discussed in terms of an operator’s ability to “sense
and avoid” potential conflicts. For an unmanned aircraft, this requires that the

Date: June 8, 2011.
1

2 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

onboard “pilot” possess some means of detecting nearby aircraft, as well as a means
of altering its course in advance to avoid endangering itself or other aircraft.

A UAV needs not only to be able to alter its course, but it needs to do so in a
way which is intelligible to human pilots observing it. By following standard flight
procedures (such as guidelines for determining right of way), a UAV can take action
to resolve conflicts while simultaneously communicating its intent to pilots around
it (i.e., by the way in which it alters its trajectory). Additionally, the planned path
must be flyable; it cannot call for abrupt 180◦ turns, or maneuvers which put too
much stress on the airframe. The final primary consideration for a UAV’s “sense
and avoid” system, of course, is the aircraft’s efficiency in negotiating the airspace,
whether in terms of time required, fuel used, or danger avoided.

The most desirable path for an autonomous aircraft, then, is a flyable path of
lowest possible cost which always maintains a safe distance from other aircraft.
Having found this optimal path, the planning computer must also be able to re-
evaluate its plans often in order to account for new craft in the airspace, changes
in environmental conditions, and so on.

Collision avoidance, then, may be summarily divided into two parts: conflict
detection (maintaining awareness of other aircraft and potential obstacles) and
conflict resolution (maneuvering to avoid hazards in light of the system’s knowl-
edge from the conflict detection system). These two objectives are, respectively, to
“sense” and “avoid” in as efficient a manner as possible.

1.1. Computation of a Best Path. Thus, there is understandably a great deal
of interest in creating UAVs able to autonomously plan paths which are optimized
for both efficiency and safety to take the aircraft from an arbitrary location to
its target. Creating such a system is clearly a hard problem, as there are a large
number of constraints to satisfy, but it is in fact an even greater challenge than it
appears at first glance: finding a best path is NP-complete [10, p. 869], meaning
that the computation is among the most difficult problems which can be solved
algorithmically. More precisely, NP-complete problems are computational prob-
lems for which no polynomial-time solution (a solution which can be computed in
a reasonable amount of time on a large set of input) is known. These problems are
widely believed to be intractable [8, p. 9]—that is, they are theoretically solvable,
but as far as we know, finding a solution requires too much time to be useful in
most cases.

In light of this, any method for computing a safe path for a UAV must com-
promise either optimality or time; one must settle either for a path which is good
without being the best, or one must begin the computation long before its solu-
tion is needed. Because conditions in the air may change rapidly (due to changes
in weather, the arrival of unexpected aircraft, systems malfunctions, and more),
computing an optimal path ahead of time is often impossible.

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 3

1.2. Formulation of the Problem. Bearing in mind the requirements for au-
tonomy, safety, efficiency of path, and speed of computation, we may formulate
the problem of collision avoidance in unmanned aerial vehicles thus:

In a short amount of time, find a flyable path of minimum or near-
minimum cost which maintains appropriate distance from all other
aircraft.

This formulation is shared with much of the extant literature on the subject;
variations between different authors’ formulations lie in their method of defining
the cost, with some authors focusing on terrain costs (risks associated with flying
over mountains, traveling too far without fuel, etc.), others on dangers associated
with military operations in hostile airspace, others on the economic cost of fuel,
and so on. In reality, the parameters used in calculating cost are of almost no
importance to the search algorithms themselves.

Worthwhile to note is the fact that path planning for collision avoidance may
focus either on static or dynamic obstacles. Although it is trivial to add static
obstacles to a system designed for dynamic ones, it is not clear that the systems
described in the literature designed for static obstacles might so easily be adapted
to dynamic ones. The choice one makes in this area will determine just how short
a “short amount of time” really is. When planning for static obstacles, a 30-second
calculation of an optimal path may be sufficiently fast, whereas when dealing with
dynamic obstacles, anything over 1 or 2 seconds may be unacceptable.

For our purposes, we are concerned exclusively with dynamic obstacles, in the
form of other, independent aircraft.

2. Literature Review

A large body of work exists addressing how best to confront the apparently
inescapable trade-off between computing time and optimality in the path planning
problem. The approaches which are best represented in the literature may broadly
be divided into the following categories:

• A* search, a method of computing the lowest-cost path from one node to
another in a mathematical graph (i.e., a set of nodes connected by edges)

• Artificial potential fields (APF), which simulate potential fields (à la mag-
netic fields) wherein the agent and its goal are of opposite “polarity” (mean-
ing that the agent will be “attracted” to its goal), while the agent and its
obstacles are of the same polarity (meaning the agent will be “repelled”
from them)

• Geometric approaches, which rely on vectors to calculate a point of closest
approach between one point mass (the simplified model of an aircraft) and
another, and to suggest a modification to those vectors which avoids conflict
or collision

4 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

• Mixed-Integer Linear Programming (MILP), a method of solving problems
which involve “both discrete decisions and continuous variables” [2], used
in particular for creating a path optimized for a number of different con-
straints

2.1. A* Search Methods. A* (spoken as “A-star”) search is a method of finding
best paths in a mathematical graph or tree. For the purpose of path planning in
aerial vehicles, the airspace must be divided into a grid, where each square in the
grid represents some area of the airspace. These squares are, in actuality, nodes
in the graph used by A* to represent the airspace. The algorithm, then, begins at
the start node (corresponding to the aircraft’s initial position) and considers the
possible nodes to which the aircraft could travel. It rates each of these possible
nodes, estimating the cost of the best possible final path which incorporates that
node. This rating of the nodes which are open to travel from some other node is
referred to as “branching.” Each node rated during the branching process is added
to a heap (a partially ordered data structure whose “top” or “front” element is
the element of lowest cost), which stores the list of nodes open to consideration
for inclusion in the optimal path.

Having finished the branching process from the start node, and beginning with
the top node in the heap (i.e., the node estimated to yield the lowest-cost path to
the goal), the algorithm repeats the process: it considers all nodes open to travel
from the new node, selects the one it estimates to be best, and continues the search
until it reaches the destination. If, at any point, it estimates that the path it is
following will be of higher cost than a path leading from some previous node (i.e.,
a node in the open heap), it will return to that previous node and search from
there.

As we have said, the algorithm’s consideration of the nodes to which it could
travel from its current position is referred to as “branching.” The algorithm’s esti-
mation of the best possible path from a current position is referred to as “bound-
ing” the future search. A* search, then, is a branch-and-bound method of coping
with NP-completeness. It is also referred to as a best-first search, as it follows the
“most promising” paths first [13, p. 6].

This algorithm’s insight lies in the way in which it branches. Since the search
problem is NP-complete, a simple in-order search of each possible path would take
a prohibitively long amount of time. Instead, A* prioritizes open nodes based on
its estimate of the best possible path from the node to the goal. This estimate is
known as a heuristic. The estimated lowest cost of a path from the initial node to
the goal which passes through a node n is denoted f(n). The calculation of f(n)
is:

f(n) = g(n) + h(n),

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 5

where g(n) is the known (previously calculated) best cost to go from the start node
to node n, and h(n) is the estimated cost of the best path from n to the goal node
[8, p. 97].

The path calculated by the A* algorithm is guaranteed to be a global optimum
whenever the heuristic function fulfills two requirements:

(1) h(n) must never overestimate the cost from n to the goal, and
(2) f(n) must be “consistent” in its method of estimation, meaning that a

successor n′ of a node n should never be estimated to have a higher cost
than the step cost from n to n′ plus the estimate h(n′) [8].

In this regard, A* has a clear advantage over other path planning algorithms.
No algorithm can possibly generate better solutions, given the same search space
and resolution; at best, other algorithms can generate equally good solutions. The
disadvantage, of course, is that this optimality comes at the cost of computing
time: in the worst case (i.e., using a poor or very general heuristic function), the
computing time required grows exponentially with the size of the input, so large
search spaces are completely impractical to work with.

Thankfully, the use of a good heuristic function (one which produces estimates
very close to the actual cost without exceeding it) can reduce the time complexity
of the problem from exponential to polynomial [13, p. 7]. This means that with the
right heuristic, one could conceivably perform a search of a reasonably large prob-
lem space in seconds using no more than a small, lightweight computer onboard a
UAV.

Figure 1. “Classic” A* versus weighted A∗ε search
Image credit: Subhrajit Bhattacharya, released under the CC BY 3.0

license

http://en.wikipedia.org/wiki/User:Subh83
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en

6 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

2.1.1. Reduced Complexity Varieties of A*. In order to further reduce the time
complexity of the search, a number of simplifications may be made to the algo-
rithm. For instance, the A∗ε (spoken “A-epsilon-star”) algorithm searches several
nodes in a row (all nodes within a fixed, positive ε value of the lowest-cost node)
before each branching. This simplification is made on the (justified) assumption
that the selection of the lowest-cost node is among the most time-consuming parts
of the computation [11, p. 18].

This method trades the guarantee of optimality for reduced search time. As illus-
trated in Figure 1, A∗ε considers far fewer nodes, which may result in a sub-optimal
path. However, if strict optimality is not necessary, considering fewer nodes in this
way is a viable way of significantly reducing the time complexity of the search.

The “Sparse A* Search” (SAS) method, designed for military flight planning by
Robert Szczerba, Peggy Galkowski, Ira Glickstein, and Noah Ternullo [10], stands
out among simplified versions of the A* algorithm. SAS significantly reduces the
complexity of the search through a few clever assumptions, nearly all of which
preserve the optimality of the path generated.

SAS improves the time complexity of the A* algorithm first by discarding from
consideration large portions of the searchable area based on the limitations of the
aircraft and pilot. For instance, in keeping pilot fatigue down, a minimum length is
imposed on each “leg” of the path; paths with straight-line portions shorter than
the minimum leg length are not considered. Likewise, in keeping the route flyable,
a maximum turning angle is imposed on the search; paths which require turns

Figure 2. Minimum leg length and maximum turning angle illustrated
on a simple grid; only the shaded region is open to consideration.

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 7

3

5 4

12 6 10 8

17 12 9

Figure 3. A binary min-heap, whose lowest level will be pruned by
SAS once full

Image adapted from Wojciech Mu la under the CC BY-SA 1.0 license

beyond the capability of the craft or the comfort of the pilot are not considered.
Figure 2 illustrates these constraints on a small, simplified search area.

Further constraints on the path (such as a maximum route distance, maximum
distance from a refueling station, or fixed heading when approaching the des-
tination) may be considered to further reduce the area explored by the search.
Introducing any of the constraints on SAS listed above will not result in a sub-
optimal path; any ideally better path which is eliminated from consideration by
the above parameters would in fact be undesirable anyway, due either to safety
concerns or the physical limitations of the aircraft.

In their discussion of SAS, Szczerba et al. provide another method of reducing
both time and space complexity (i.e., computing time and memory usage) [10].
Their method places a hard limit on the amount of memory used by the algorithm.
As previously discussed, during the branching phase, A*’s heuristic function es-
timates the total cost of a path through a node and places that node on a heap
(this heap is later used to select the next node from which to search). In order
to limit memory usage, Szczerba et al. “prune” the heap after it reaches a prede-
fined depth. When a new node is to be added to an already full heap (a heap of
maximum depth), pruning occurs by:

(1) randomly selecting an element at the bottom of the heap (i.e., an element
most likely to lead to a sub-optimal solution),

(2) replacing it with the node to be added, and
(3) restoring the heap structure (the ordering property), in an operation known

as “up-heap” or “heapify-up,” among other names.

For instance, in Figure 3, if the maximum queue depth were set to 4, the nodes
highlighted in green would be open to pruning once the lowest level became full.

In addition to the obvious memory savings, pruning causes a smaller number of
nodes to be searched overall, leading to a decrease in computing time.

http://commons.wikimedia.org/wiki/User:Wojciech_mula
http://creativecommons.org/licenses/by-sa/1.0/deed.en

8 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

Artificial Potential Fields

Figure 4: One direction tangential potential fields

Figure 5: Combination of attractive and repulsive
linear potential fields

Figure 6: Trajectory of a robot in the environment
of an obtacle and a target position

Problems of APF

Local Minima

The most common problem of APF is stucking with
local minima. It is the case which occurs when the
total force acting on the agent is summed up to
zero although robot has not reached its goal posi-
tion yet. In order to solve this problem, A* short-
est path finding algorithm is applied by [2] which in-
deed necessitates dividing world into grids-decreases
the continuity- and serious computation depending
on the state (grid) definition of the world. Another
solution is applying random apf force vectors which
may cause the robot follow a longer path or does not
guarantee to get rid of local minima in one shot. To
solve this problem, Plazma-z SSL Team [3] uses some
predefined apf patterns but this conflict with the idea
of having one common solution to any state of the
world. However, object grouping method works very
well for any local minimum case which will be ex-
plained later on.

Figure 7: Local Minima

Figures below[4] indicates tangential potential fields
which are commonly used to make the robot traverse
around obstacles. It is actually one of the solutions
to get rid of the local minimum trap shown in the
figure 7.

Kadir Firat Uyanik 2

Artificial Potential Fields

Figure 4: One direction tangential potential fields

Figure 5: Combination of attractive and repulsive
linear potential fields

Figure 6: Trajectory of a robot in the environment
of an obtacle and a target position

Problems of APF

Local Minima

The most common problem of APF is stucking with
local minima. It is the case which occurs when the
total force acting on the agent is summed up to
zero although robot has not reached its goal posi-
tion yet. In order to solve this problem, A* short-
est path finding algorithm is applied by [2] which in-
deed necessitates dividing world into grids-decreases
the continuity- and serious computation depending
on the state (grid) definition of the world. Another
solution is applying random apf force vectors which
may cause the robot follow a longer path or does not
guarantee to get rid of local minima in one shot. To
solve this problem, Plazma-z SSL Team [3] uses some
predefined apf patterns but this conflict with the idea
of having one common solution to any state of the
world. However, object grouping method works very
well for any local minimum case which will be ex-
plained later on.

Figure 7: Local Minima

Figures below[4] indicates tangential potential fields
which are commonly used to make the robot traverse
around obstacles. It is actually one of the solutions
to get rid of the local minimum trap shown in the
figure 7.

Kadir Firat Uyanik 2

Figure 4. Force vectors created by summing the potential fields, with
the avoidance path taken by an aircraft around the obstacle

Image credit: [12]

Unlike the other optimizations used by Szczerba et al., limiting memory usage
in this way may result in a loss of optimality; nodes which are pruned from consid-
eration may in fact lead to excellent solutions. With a relatively large maximum
size, however, this will only occur through a failure of the heuristic, in an instance
where it judges a possible path to be significantly less promising than it actually is.
Nevertheless, in view of this possibility, Szczerba et al. recommend the maximum
heap size be set as high as possible in order to prune as few nodes as possible from
consideration.

2.2. Artificial Potential Field (APF) Methods. The use of an artificial po-
tential field (APF) in collision avoidance is adapted from particle physics and, in
particular, the attractive and repulsive qualities of polarized charges. APF meth-
ods model the obstacles that an aircraft needs to avoid (such as other airplanes)
as repelling point charges while modeling an aircraft’s goal as an attractive point
charge. When a plane comes into contact with the repelling APF (RAPF) of an-
other plane, a force vector is calculated and the planes are given new waypoints
which push them away from one another. Figure 4 illustrates the vectors calculated
in the implementation of such fields.

The force function responsible for creating these fields must meet the following
requirements:

(1) It must be continuous and differentiable.
(2) Its strength must increase inversely with the distance to obstacles.
(3) Its strength must decrease directly with the distance to goals [4].

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 9

Creating a force function suitable for a given situation is rather difficult. How-
ever, once the general mathematical function is developed, all calculation can be
done by directly consulting the function’s output. Thus, the time complexity of
APF calculations is minimal (this is the significant advantage to using APFs over
A*-based planning methods). While the functions themselves are complex, once
they are programmed, one need only calculate the total force acting on a single
plane in order to generate a force vector [4]. Once this vector is calculated, its
value is input into a function that generates a new waypoint for the plane.

While the use of an artificial potential field is a very fast and computationally
efficient technique for collision avoidance, the method is not without its drawbacks.

2.2.1. Local Minima. The first, and largest, of the problems associated with APFs
is the existence of local minima. A local minimum is an area with a net force of
zero [12]. This can happen when the aircraft is surrounded by obstacles, or when
its goal is crossed by another aircraft (situations which are also problematic for A*
search). However, local minima may be created in other ways as well. The most
devastating of these conditions occurs when two aircraft are situated with respect
to one another in a way that causes the force repelling the first plane from the
second to be exactly the opposite of the force pulling the first plane to its goal [6].
In such a case, the first aircraft might “think” that it had already reached its goal,
or worse, that it was safe to continue in a straight line, leading to a collision.

Numerous solutions to this problem have been proposed. The first is to cause
the aircraft to default to an A*-determined path if it reaches a point in space with
a net force of zero [12]. While using an A* path as a failsafe does overcome local
minima, it also increases computation time significantly. Another solution to local
minima is to use genetic algorithms to perfect the field calculations [6]. In the long
run, this method reduces computation time. It does, however, incur the typical
problems associated with genetic programming, including the many generations
required to find an excellent function.

2.2.2. Oscillatory Movements. A second issue which must be addressed when using
artificial potential fields is the problem of oscillatory movements. Such movements
occur when the fields around an aircraft sum to forces moving in a wave or in
small circles [12]. These circular movements cause the aircraft to take paths that
are clearly suboptimal, or even to backtrack. While such movements may not cause
collisions, they do greatly increase the time required for a plane to traverse a given
path. This problem can be addressed by requiring a minimum distance between
consecutive waypoints [12]. When the waypoints are spaced out by a set distance,
most oscillatory movements can be eliminated. In all cases, however, the paths are
not guaranteed to be optimal.

2.2.3. Flyable Paths. The fixes to the problems associated with potential fields
discussed above work very well when working mainly with ground-based robots.
When working with aircraft, however, it is quite difficult to ensure that the paths

10 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

- 2124 -

- For UAV ‘A’

| |

A VSA
A

A VSA

V
U

V

r

r

τ

τ
=

⋅ +

⋅ +
 (15)

- For UAV ‘B’

| |

B VSB
B

B VSB

V
U

V

r

r

τ

τ

⋅ +
=

⋅ +
 (16)

BV τ⋅

AV τ⋅

mr

mr−

mr

VSAr

VSBr

AU

BU

Fig. 3 Resolution Maneuvering.

If two UAVs are going to have a direct head-on

collision (mr = 0), by disturbance making process we
make two UAVs have non-zero miss distance vector.
Detail is followed as:

0.01 ()

| 0.01 () |

V h V
U

V h V

+ × ×

+ × ×
= (17)

where h is the unit vector of z-direction. In real
flight, by certain maneuver of one of UAVs, this
problem can be resolved. Additionally, if it is doubt to
the chattering or not complete information from ADS-B,
we define certain region to be dealt with as zero miss
distance region.

3.3 The Optimal Maneuver to Resolve

We can consider the optimal problem to maximize the
miss distance at the end of resolution maneuver.

21
min | |

2 m f
a

J r= − (18)

where ‘a’ is acceleration vector as input. Then we can
derive the equation of Hamiltonian.

()f f fH r v A t t r e= − − − (19)
where e is the unit vector of acceleration vector.

Therefore we conclude that acceleration along the miss
distance vector can minimize the Hamiltonian so that it
can be the optimal solution.[5]

This is not sudden result. With the protected zone of
sphere it is most efficient to avoid each other along the
miss distance vector since the miss distance vector is
perpendicular to the velocity vector so that it maximize
the miss distance with same acceleration to apply the
acceleration to the direction miss distance vector line.

3.4 Application to the UAV Dynamics

We know the directions of now-going and modified.
Now-going one is the direction of velocity V and
modified one is the direction of U .

3.4.1 Application to the UAV Dynamics

With these two vectors we can calculate the LOS
(Line Of Sight) angle. For each UAV, the LOS is
defined:

(()) arccos
| |
H H

H H z
H

V U
signum V U

V
λ =

⋅× (20)

where subscript ‘H’ means horizontal element.
By the LOS angle found we decide the bank

command as an input. It is assumed that each UAV has
its maximum bank angle of 45 degree. So with the
maximum bank angle, we can calculate the maximum
heading angle change for 1 second:

max
| |H

g

V
γ = , for 1 second and maxφ (21)

where g is the gravity acceleration and HV is the
horizontal velocity.

Keeping on this result, the horizontal maneuver logic
is followed as:

Table 1 The Horizontal Maneuver Options.

Range of LOS angle Bank Command

maxλ γ< − 45comφ = − °

max maxγ λ γ− ≤ ≤
max

45com
λ

φ
γ

= °×

maxγ λ< 45comφ = °

An UAV can change the bank angle easily, so we set

the time constant N of 1 second in Eq. (4).

3.4.2 Application to the UAV Dynamics
With unit vector U for each UAV, we can obtain the

pitch angle required. Required pitch angle can be
expressed as:

arctan
| |

V
req

H

U

U
θ = (22)

Vertical motion is hard to change fast. So we have to
deal with the change of pitch angle carefully. At the
vertical maneuver, we set the time constant of M in Eq.
(5) by the required pitch angle.

Vertical maneuver logic is followed as:

Table 2 The Vertical Maneuver Options.
Required pitch angle Time constant, M

0 | 15|reqθ° < < ° 1 second

15 | 30|reqθ° < < ° 2 seconds

30 | 45|reqθ° < < ° 3 seconds

| 45|reqθ > ° 4 seconds

Figure 5. Creation of an avoidance vector via the geometric approach
Image credit: [5]

generated are flyable. Unflyable paths are those with too much oscillation or with
waypoints outside the craft’s maximum turning radius.

Under traditional methods of APF creation, it is difficult to take into consider-
ation the aircraft’s turning radius. Using a genetic programming approach to the
creation of the force function, however, the potential fields may be tuned in such
a way as to work within the aircraft’s limitations after many generations [6].

Thus, while APFs are promising tools for collision avoidance in aircraft, they
have many limitations that typically require a secondary programming method to
be included on top of their simple force vector calculations.

2.3. Geometric Approaches. Geometric approaches to collision avoidance are
built on 3-dimensional vectors which represent an aircraft as a point mass with
a velocity (i.e., speed and heading) and location. An airplane’s vector is calcu-
lated out to a specified time, and if it is predicted to come too close to another
craft’s vector, the aircraft are considered to be in conflict [5]. When a conflict is
discovered, each airplane works to avoid the predicted conflict zone by calculating
a new path known as their avoidance vector. The aircraft then adjust their speed,
heading, and altitude as necessary to follow this avoidance vector.

Calculation of an avoidance vector is very fast; it requires even less computing
time than the force vector calculation used in an artificial potential field. However,
while this method works well with two aircraft given one waypoint each, it becomes
more difficult to calculate a good avoidance vector as the airspace grows more
crowded [5]. In addition to the problem of scaling, this method also hinges on the
effective use of altitude control, which may not be desirable in all situations.

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 11

2.4. Mixed-Integer Linear Programming (MILP) Methods. Mixed-integer
linear programming is a method of path planning which relies on a description of
the problem in terms of a desired optimization of discrete decisions and continu-
ous or integer variables. The mixed-integer linear program which results from this
description of the problem may be solved using any of a number of extant software
packages, both open-source and proprietary.

MILP has primarily been used in linear path planning around static obstacles.
To adapt this strategy to collision avoidance with dynamic obstacles (e.g., other
UAVs), one must first model the aircraft’s flight paths in a linear, static way [7].
Performance characteristics of the aircraft such as their turning radii and acceler-
ation capabilities must be rendered as linear, though they are not, of course, in
reality. These limits on the aircraft’s performance may effectively be represented
as force magnitude limits [7]. For instance, the instantaneous turning rate ω may
be limited in the program by adding the constraint:

ω ≤ f

mV
.

Adding constraints in this way into the formulation of the problem ensures that
the (optimal) path generated is a flyable one.

Once the flight characteristics of the aircraft are modeled in the input equations,
the system of equations is solved in a way that creates paths which prevent collision

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Time (s)

S
pe

ed
 (

m
/s

Turn rate 15 o/s
Turn rate 12 o/s

Fig. 5: Speed of vehicle during maneuvers shown in
Fig 4. The dashed line shows the specified limit.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Time (s)

T
ur

n
R

at
e

(d
eg

re
e/

s

Turn rate 15 o/s
Turn rate 12 o/s

Fig. 6: Turning rate of vehicle during maneuvers
shown in Fig 4. The dashed line shows the real air-
craft limit of 15o/s.

in [1], found by an iterative process involving the nec-
essary conditions for optimal avoidance. This paper
has repeated that result by direct optimization. The
trajectories also demonstrate the co-operative nature
of this method.

The heavy dots mark the positions of the aircraft at the
18th time step. The exclusion regions around these po-
sitions are shown by the dotted boxes. Observe that the
vehicles are separated by exactly the safety distance,
illustrating the efficiency of the formulation and the
direct physical significance of the avoidance distance.
This contrasts with penalty methods such as potential
functions [12], in which the avoidance weighting is not
so obviously related to the achieved distance and may
need tuning.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X

Y

Fig. 7: The designed trajectories for the aircraft. The
stars mark the target positions.

4.3 Four Aircraft
This example applies the method shown to a more
realistic-looking problem. It involves four aircraft fly-
ing intersecting routes. The straight-line path for each
aircraft is shown dotted in Fig. 8 and the targets are
shown by stars. The circles mark the trajectories
designed using the collision avoidance constraints in
Equ. 8. As expected, the resulting trajectories consist
of nearly straight sections joined by turns. Each air-
craft makes a small deviation from the straight path to
avoid collision, demonstrating the co-operative nature
of the method.

4.4 Multiple Waypoints
This section presents an example of the multiple way-
point formulation, in which the aircraft must visit sev-
eral different points in an unspecified order. In Fig. 9,
the waypoints are marked by stars. The algorithm has
chosen the ordering to give the fastest trajectory vis-
iting all three points. In Fig. 10, an obstacle blocks
the path used in Fig. 9. The algorithm now selects a
different ordering to visit the points in minimum time.
This illustrates the potential of this method for solv-
ing planning problems including aspects of high-level
co-ordination.

5 Conclusion

It has been shown by theory and example that a con-
stant speed, limited turn rate vehicle, such as an air-
craft, can be modeled as a point mass with limited
speed and subject to limited force in a minimum time

Figure 6. Paths created for 3 planes. The black circles represent the
three aircraft, the starred circles the goal waypoints, and the white

circles the paths planned by the MILP algorithm
Image credit: [7]

12 TYLER YOUNG, THOMAS CRESCENZI, AND ANDREW KAIZER

for all planes and produce optimal times to waypoints. These paths are calculated
at once, from the aircraft’s starting positions, and do not need to be calculated
again except in the case of contingency.

The MILP approach benefits heavily from having only cooperative aircraft in
the airspace. By giving each aircraft a path which is optimized for the “greater
good,” a globally optimal path may be used which is suboptimal (and thus not
chosen otherwise) for an individual aircraft. For instance, Figure 6 shows three
cooperative aircraft each being given a path modified slightly from a straight line
in order to collectively reach their goals in minimal time.

MILP-planned paths are guaranteed to produce optimal paths. In practice, how-
ever, the time complexity renders problems of even moderate size intractable.

3. Discussion and Future Research

The path planning and collision avoidance algorithms reviewed above represent
different means of dealing with the fact that the problem is NP-complete. Each
algorithm sacrifices either speed of computation or optimality of path, and it is
clear that each is suited to specific applications. Instances where computing power
is very limited would benefit from APF or geometric approaches, whereas situa-
tions with greater computing power or less strict time requirements would wisely
implement an A*- or MILP-based approach.

For our own future research, our preliminary testing indicates that a version of
A* search drawing from the SAS heuristic of Szczerba et al. will be sufficiently fast
while still giving an optimal solution. We will thus be implementing A* on a static,
discretized model of our dynamic airspace, an idea which has been discussed in
the literature but which, to our knowledge, has not been fully explored elsewhere.

THE PROBLEM OF COLLISION AVOIDANCE IN UNMANNED AERIAL VEHICLES 13

References

[1] Federal Aviation Administration. Fact sheet – Unmanned aircraft systems (UAS), December
2010.

[2] Aerospace Controls Lab at Massachusetts Institute of Technology. Mixed-integer linear pro-
gramming for control.

[3] Christopher Geyer, Snajiv Singh, and Lyle Chamberlain. Avoiding collisions between air-
craft: State of the art and requirements for UAVs operating in civilian airspace. Technical
report, Carnegie Mellon University Robotics Institute, 2008.

[4] Yun Seok Nam, Bum Hee Lee, and Nak Yong KO. An analytic approach to moving obstacle
avoidance using an artificial potential field. In 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots, volume 2,
pages 482–487, August 1995.

[5] Jung-Woo Park, Hyon-Dong Oh, and Min-Jea Tahk. UAV collision avoidance based on
geometric approach. SICE Annunal Confrence, pages 2122–2126, 2008.

[6] Yao-Hong Qu, Quan Pan, and Jian-Guo Yan. Flight path planning of UAV based on heuris-
tically search and genetic algorithms. 31st Annual Conference of IEEE, November 2005.

[7] Arthur Richards and Jonathan P. How. Aircraft trajectory planning with collision avoid-
ance using mixed integer linear programming. In Proceedings of the 2002 American Control
Conference, volume 3, pages 1936–1944, 2002.

[8] S.J. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice Hall series
in artificial intelligence. Prentice Hall, 3rd edition, 2010.

[9] Ryan J. Schaefer. A standards-based approach to sense-and-avoid technology. AIAA 3rd
Unmanned Unlimited Technical Conference, Workshop and Exhibit, pages 1–6, September
2004.

[10] R.J. Szczerba, P. Galkowski, I.S. Glicktein, and N. Ternullo. Robust algorithm for real-time
route planning. IEEE Transactions on Aerospace and Electronic Systems, 36(3):869–878,
July 2000.

[11] Karen Irene Trovato. A* Planning in Discrete Configuration Spaces of Autonomous Systems.
PhD thesis, University of Amsterdam, September 1996.

[12] Kadir Firat Uyanik. Artificial potential fields, October 2009. RoboCup Small Size League
project.

[13] J. van Tooren, M. Heni, A. Knoll, and J. Beck. Development of an autonomous avoidance
algorithm for UAVs in general airspace. Technical report, EADS Defence and Security,
Military Air Systems, 2007.

	1. Introduction
	1.1. Computation of a Best Path
	1.2. Formulation of the Problem

	2. Literature Review
	2.1. A* Search Methods
	2.1.1. Reduced Complexity Varieties of A*

	2.2. Artificial Potential Field (APF) Methods
	2.2.1. Local Minima
	2.2.2. Oscillatory Movements
	2.2.3. Flyable Paths

	2.3. Geometric Approaches
	2.4. Mixed-Integer Linear Programming (MILP) Methods

	3. Discussion and Future Research
	References

