ElixirConf US

Tyler A. Young

Cat and Mouse:
Challenges in
Adversarial Web

Scraping

@tylerayoung.com:, M @tylerayoung@fosstodon.org

Spiral galaxy NGC 1317 by NASA via the Hubble telescope

https://www.flickr.com/photos/nasahubble/54519527751/

ElixirConf US ©

#ElixirConf

ElixirConf US ©

Req.get! ()

#ElixirConf

403 Forbidden

nginx/1.28.0

ElixirConf US ¢

| > Req . get | () (We'll come back to the ethics of this!)

#ElixirConf

TR S

\ ‘ “|
\. 1\

!

;‘»

¥
s

.

me back to the ethics of this!)

.

#ElixirConf

403 Forbidden

nginx/1.28.0

ElixirConf US ©

headers

(We'll come back to the ethics of this!)

#ElixirConf

403 Forbidden

nginx/1.28.0

403 Forbig

nginx/1.28.(

ElixirConfUS(
Who am |?

e MMO flight sim server for X-Plane in 2019

e Real-time document collab for Felt until 2024

e Took a break to work on indie web site
monitoring tool, SleepEasy

e Currently at Jump (Al for financial advisors)
o We're always hiring!

o It's a wonderful place to work!

@tylerayoung.com m @tylerayoung@fosstodon.org

ElixirConf US

JA4+ fingerprinting

github.com/FoxIO-LLC/ja4

e Looks at the way the client performs a TLS
handshake

o Ciphers, extensions, timings, etc.

e Block the traffic if it doesn't match a known

consumer browser P

#ElixirConf

https://github.com/FoxIO-LLC/ja4?tab=readme-ov-file

ElixirConf US

JA4+ fingerprinting
HAPROXY N Gim x
A Vercel oD

CLOUDFLARE

fastly

-~ e
O R /// Y 4
- T 4

#ElixirConf

ElixirConf US 9

#ElixirConf

ElixirConfUS(
Just use a headless browser!

wallaby

Q Play
g celeniull

ElixirConfUS(
Just use a headless browser!

Pros:

Exactly imitates the browser!

Cons:

® Slow

3" Unreliable

« Memory hog
« CPU hog

ElixirConfUS(
Just use a haadless browser!

Pros:

Exactly imitates t

Cons:

® Slow

>.2 Unreliable

« Memory hog
« CPU hog

ElixirConf US(

Just pay to make it somebody
else’s problem!

Zyte
Apify

ScrapingBee

So, so many others

ElixirConf US ©

What would a

better solution
look like?

#ElixirConf

Enter curl-impersonate

github.com/Iwthiker/curl-impersonate

ElixirConf US(

Exactly emulates the way Chrome, Safari, Edge,
and Firefox perform a request:

Protocol (HTTP/2)
TLS handshake

Headers

More?

*Results not guaranteed. #ElixirConf

https://github.com/lwthiker/curl-impersonate

ElixirConf US(

Using curl-impersonate from Elixir

e NIF

ElixirConf US(

Using curl-impersonate from Elixir

e NIF

o How confident are you that it won't
crash the whole system?

ElixirConf US(

Using curl-img

anate from Elixir

o NIF

o How confiden
crash the who

ElixirConf US(

Using curl-impersonate from Elixir

e NIF

o How confident are you that it won't
crash the whole system?

e System.shell/{1,2}
o stderr mixed in with stdout

o Parse your own results

curl-impersonate -v https://tylerayoung.com
Host tylerayoung.com:443 was resolved.
IPv6: (none)

IPv4: 18.208.88.157, 98.84.224.111

* * ok U

[HTTP/2] [1] [user-agent: curl/8.7.1]
[HTTP/2] [1] [accept: */*]

GET / HTTP/2

Host: tylerayoung.com

User-Agent: curl/8.7.1

Accept: */*

Request completely sent off

HTTP/2 2600

accept-ranges: bytes

age: 0

cache-control: public,max-age=0,must-revalidate

AN NN %XV V V V V X %

< content-length: 70454
<
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">

ElixirConf US(

Using curl-impersonate from Elixir

e NIF

o How confident are you that it won't
crash the whole system?

e System.shell/{1,2}
o stderr mixed in with stdout
o Parse your own results

e Library?

ElixirConf US

BrowseyHttp

github.com/s3cur3/browsey http

e Wrapper for curl-impersonate command line

e |oads other page resources (images, JS,
CSS) in parallel like a browser

e Preserves cookies across requests

e .max_response_size_bytes

#ElixirConf

https://github.com/s3cur3/browsey_http

ElixirConf US

Pefense Offense
in depth

Try Browsey first when scraping a site
2. Ifitfails, try a headless browser

Only if that fails, fall back to a third-party
provider

#ElixirConf

ElixirConf US

What does
Browsey not solve?

ElixirConf US

dl'S TECHNICA

(™) THE GREAT FLOOD

Open source devs say
Al crawlers dominate
traffic, forcing blocks

on entire countries

Al bots hungry for data are taking down FOSS sites by accident,
but humans are fighting back.

BENJ EDWARDS - MAR 25, 2025 4:36 PM | ’ 154 =» Credit: Henrik Sorensen via Getty Images
Software developer Xe laso reached a breaking point earlier this year when aggressive Al
— crawler traffic from Amazon overwhelmed their Git repository service, repeatedly causing

instability and downtime. Despite configuring standard defensive measures—adjusting
robots.txt, blocking known crawler user-agents, and filtering suspicious traffic—laso found
that Al crawlers continued evading all attempts to stop them, spoofing user-agents and
cycling through residential IP addresses as proxies.

Desperate for a solution, laso eventually resorted to moving their server behind a VPN and
creating "Anubis," a custom-built proof-of-work challenge system that forces web

ElixirConf US

How | would
defeat me

e Per-IP rate limits (need an IP pool)
e |P source (residential or a data center?)

e “Human factor” (randomness?)

e Require JavaScript

e Authentication

#ElixirConf

ElixirConf US

How | would
defeat me

e Per-IP rate limits (need &

e |P source (residential ol
“Human factor” (rando’
Require JavaScript /

).

Authentication

ElixirConfUS(
Per-IP rate limiting

e Paraxial.io for Elixir (*y Michael)
e Cloudflare, AWS WAF, Google Cloud Armor, etc.

e Roll your own via PlugAttack
github.com/michalmuskala/plug _attack

http://paraxial.io
http://github.com/michalmuskala/plug_attack

& rate_limit_plug.ex U X

& routerex M X

lib > prd_web > plugs > & rate_limit_plug.ex > ...

lib > prd_web > & router.ex > {} PrdWeb.Router

1 v defmodule MyAppWeb.RateLimit do

2 use PlugAttack

3

4 dbypass_rate_limiter? Mix.env() in [:dev, :test]
5

6 v rule "allow localhost", conn do

7 v if @bypass_rate_limiter? do

8 allow(true)

9 end

10 end

11

12 v rule "throttle requests by ip", conn do

13 v throttle({:ip, conn.remote_ip},

14 period: to_timeout(second: 60),

15 limit: 10,

16 storage: {PlugAttack.Storage.Ets, MyAppWeb.RateLimit.Storage}
17)

18 end

19

20 @impl PlugAttack

21 def block_action(conn, data, _opts) do

22 conn

23 > Plug.Conn.send_resp(429, "Too Many Requests\n")
24 |> Plug.Conn.halt()

25 end

26 end

You, 1 second ago | 2 authors (You and one other)
v defmodule PrdwWeb.Router do

use PrdwWeb, :router
use ErrorTracker.Integrations.Plug

plug :accepts, ["html"]
| plug MyAppWeb.RateLimit
plug :fetch_session

1
2
3
4
5 v pipeline :browser do
6
7
8
9 plug :fetch_live_flash

10 plug :put_root_layout, {PrdwWeb.Layouts,
11 plug :protect_from_forgery

12

13 =7 plug :put_secure_browser_headers, %{

14 v "content-security-policy" =>

15 v ContentSecurityPolicy.serialize(

16 struct(ContentSecurityPolicy.Policy
17)

18 }

19

20 plug :fetch_current_user

21 plug :fetch_impersonator_user

22 plug :kick_user_if_suspended_or_deleted
23 plug PetalFramework.SetLocalePlug, gette>
24 end

25

o ¥ nenalana ikl s~ 1avant Aa

ElixirConfUS(
Per-IP rate limiting

e Paraxial.io

e Roll your own via PlugAttack
github.com/michalmuskala/plug_attack

e Could also limit by ASN or city (?)

o qithub.com/navinpeiris/geoip

o github.com/g-andrade/locus

*Autonomous System Number.
~100K in use, one per ISP or large org.

#ElixirConf

http://paraxial.io
http://github.com/michalmuskala/plug_attack
http://github.com/navinpeiris/geoip
http://github.com/g-andrade/locus

Detecting non-residential
|IP addresses

e All the major cloud providers publish their
IP ranges

e Use PlugAttack to block these requests?

e C(Classifying Data Center IP Addresses in
Phoenix Web Applications with Radix Trees
by Paraxial.io

ElixirConf US

#ElixirConf

https://paraxial.io/blog/cloud-ips
https://paraxial.io/blog/cloud-ips

Detecting humanity

e Request patterns

©)

O

©)

ElixirConf US(

Are they loading assets at the same time?
Are they caching assets correctly?

Are they loading pages directly linked
by the previous one?

How long does a session last?

ElixirConf US*
Detecting humanity

e Request patterns
o Are they loading assets at the same time?
o Are they caching assets correctly?

o Are they loading pages directly linked
by the previous one?

o How long does a session last?

e Are they firing mouse/touch/
key events?

ElixirConf US

Requiring JavaScript

e Click/touch/key events

e Challenge/response from initial
request to get the real content

e Captchas

e Go fully client-side rendered (%))

#ElixirConf

ElixirConf US*
Requiring authentication

& No more scrapers!
** No more anonymous traffic!

Don't reinforce
digital inequality

Screen readers

Keyboard navigation
Low-end phones in Pakistan
Scrappy little companies

Brazilians

ElixirConf US

#ElixirConf

ElixirConf US

Don't hurt
site owners

e Keep traffic levels to human scale
e Respect intellectual property

e Don't be evil

#ElixirConf

Get Started Free | Contact Sales

Subscribe to receive notifications of new posts:

CcLOUDELARE [heCloudflare Blog

Al Developers Radar Product News Security Policy & Legal Zero Trust Speed & Reliability Life at Cloudflare Partners O\

Perplexity is using stealth,
undeclared crawlers to evade
website no-crawl directives

5
3 Gabriel Corral a Vaibhav Singhal
@ Reid Tatoris

- Brian Mitchell

(EHJ Perplexity

The website https://_com/ does not have a publicly accessible robots.txt file as

of July 27, 2025. Attempts to access the file at the standard location (https:/

I o/ obots.txt) show that it is either missing or inaccessible. When a

robots.txt file is not present, web crawlers typically assume there are no crawling restrictions for

the site.

Obfuscating behavior observed
Bypassing Robots.txt and undisclosed IPs/User Agents
Our multiple test domains explicitly prohibited all automated access by specifying in

robots.txt and had specific WAF rules that blocked crawling from Perplexity's public
crawlers. We observed that Perplexity uses not only their declared user-agent, but also

a generic browser intended to impersonate Google Chrome on macOS when their

declared crawler was blocked.

Declared | Mozilla/5.0 AppleWebK:it/537.36 (KHTML, like Gecko; compatible; Perplexity- | 20-25m daily
User/1.0; +https://perplexity.ai/perplexity-user) requests

Stealth Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 3-6m daily
(KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 requests

Both their declared and undeclared crawlers were attempting to access the content for
scraping contrary to the web crawling norms as outlined in RFC 9309.

This undeclared crawler utilized multiple IPs not listed in Perplexity's official IP range,

and would rotate through these IPs in response to the restrictive robots.txt policy and

ElixirConf US

Questions?

e Slides: tylerayoung.com

e BlueSky: @tylerayoung.com

e Mastodon: @tylerayoung@fosstodon.org
e Elixir Slack: Tyler Young

#ElixirConf

ElixirConf US

BONUS

Dumb tricks to force
server-side rendering

e Twitter expects GoogleBot to send
auth headers

e Most other bots are expected to execute
JavaScript

e Enter: BaiduBot!

#ElixirConf

ElixirConf US ©

Req.new(
url:

headers: %{
=> [

}

)
|> Req.get! ()

#ElixirConf

